Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
radiocc
radiocc
Commits
41aaf807
Commit
41aaf807
authored
Mar 31, 2022
by
Ananya
Browse files
errors rectified in R7 and R17
parent
a8a031e9
Pipeline
#1379
passed with stage
in 9 minutes and 26 seconds
Changes
4
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
CHANGELOG.md
View file @
41aaf807
...
...
@@ -19,11 +19,18 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased]
## [0.6.23] - 2022-03-31
### Changed
+
errors rectified in R17_Run_Routines1.py and R7_Offset_Correction.py
## [0.6.22] - 2022-03-30
### Changed
+
updated R17_Run_Routines1.py and R7_Offset_Correction.py for differential doppler
+
updated R17_Plot_profiles.py, R17_Run_Routines1.py and
R7_Offset_Correction.py for differential doppler
## [0.6.21] - 2022-03-29
...
...
pyproject.toml
View file @
41aaf807
[tool.poetry]
name
=
"radiocc"
version
=
"0.6.2
2
"
version
=
"0.6.2
3
"
description
=
"Radio occultations"
license
=
"Apache-2.0"
authors
=
[
"Ananya Krishnan <ananyakrishnaniiserk@gmail.com>"
,
"Greg Henry <gregoire.henry@oma.be>"
]
...
...
radiocc/old/R17_Run_Routines1.py
View file @
41aaf807
...
...
@@ -202,30 +202,30 @@ def run(
if
Bande
==
"S"
:
if
radiocc
.
cfg
.
use_diff_doppler
:
Doppler_debias_dn_iono_s
=
Diff_Doppler_debias_dn_iono_s
if
item
==
"IONO"
:
# R8: bending angle & impact parameter up
(
imp_param_up
,
bend_ang_up
,
delta_r_up
,
beta_r_up
,
)
=
R9_BendAng_ImpParam_up
.
Bend_up
(
N_data
,
r_MEX_up
,
z_MEX_up
,
z_GS_up
,
vr_MEX_up
,
vz_MEX_up
,
vr_GS_up
,
vz_GS_up
,
gamma_up
,
beta_e_up
,
delta_s_up
,
Doppler_debias_up_iono_s
,
fsup
,
c
,
DATA_TYPE
,
)
if
item
==
"IONO"
:
# R8: bending angle & impact parameter up
(
imp_param_up
,
bend_ang_up
,
delta_r_up
,
beta_r_up
,
)
=
R9_BendAng_ImpParam_up
.
Bend_up
(
N_data
,
r_MEX_up
,
z_MEX_up
,
z_GS_up
,
vr_MEX_up
,
vz_MEX_up
,
vr_GS_up
,
vz_GS_up
,
gamma_up
,
beta_e_up
,
delta_s_up
,
Doppler_debias_up_iono_s
,
fsup
,
c
,
DATA_TYPE
,
)
# R8: bending angle & impact parameter down
(
...
...
radiocc/old/R7_Offset_Correction.py
View file @
41aaf807
...
...
@@ -12,77 +12,77 @@ import radiocc
def
Off_Cor
(
Type
,
threshold
,
Doppler
,
Diff_doppler
,
ET
,
N_data
,
distance
,
CODE_DIR
,
i_integral
):
if
radiocc
.
cfg
.
use_diff_doppler
:
Doppler
=
Diff_doppler
Doppler_debias
=
np
.
full
(
N_data
,
np
.
nan
)
Doppler_biasfit
=
np
.
full
(
N_data
,
np
.
nan
)
delET
=
np
.
full
(
N_data
,
np
.
nan
)
Doppler_debias
=
np
.
full
(
N_data
,
np
.
nan
)
Doppler_biasfit
=
np
.
full
(
N_data
,
np
.
nan
)
delET
=
np
.
full
(
N_data
,
np
.
nan
)
# altitude threshold for fit
Corr_ind
=
0
for
i
in
range
(
len
(
distance
)):
if
distance
[
i
]
>
threshold
:
Corr_ind
+=
1
if
Corr_ind
==
len
(
distance
):
Corr_ind
=
Corr_ind
-
1
# Search for maximum
# altitude threshold for fit
Corr_ind
=
0
for
i
in
range
(
len
(
distance
)):
if
distance
[
i
]
>
threshold
:
Corr_ind
+=
1
if
Corr_ind
==
len
(
distance
):
Corr_ind
=
Corr_ind
-
1
# Search for maximum
if
len
(
Doppler
)
%
2
==
1
:
taille
=
len
(
Doppler
)
else
:
taille
=
len
(
Doppler
)
-
1
if
len
(
Doppler
)
%
2
==
1
:
taille
=
len
(
Doppler
)
else
:
taille
=
len
(
Doppler
)
-
1
Smoothed_Doppler
=
sg
.
savgol_filter
(
Doppler
,
taille
,
40
)
deriv
=
np
.
gradient
(
Smoothed_Doppler
)
Smoothed_Doppler
=
sg
.
savgol_filter
(
Doppler
,
taille
,
40
)
deriv
=
np
.
gradient
(
Smoothed_Doppler
)
good
=
np
.
logical_and
(
deriv
[
np
.
array
(
np
.
where
(
deriv
[:
-
1
]
<
1E-5
))
-
1
]
<
0
,
\
deriv
[
np
.
array
(
np
.
where
(
deriv
[:
-
1
]
<
1E-5
))
+
1
]
>
0
)
targ
=
np
.
where
(
deriv
[:
-
1
]
<
1E-5
)
index
=
targ
[
0
][
good
[
0
]]
good_one
=
index
[
-
1
]
good
=
np
.
logical_and
(
deriv
[
np
.
array
(
np
.
where
(
deriv
[:
-
1
]
<
1E-5
))
-
1
]
<
0
,
\
deriv
[
np
.
array
(
np
.
where
(
deriv
[:
-
1
]
<
1E-5
))
+
1
]
>
0
)
targ
=
np
.
where
(
deriv
[:
-
1
]
<
1E-5
)
index
=
targ
[
0
][
good
[
0
]]
good_one
=
index
[
-
1
]
# FIT
if
Type
==
'Fit'
:
p
=
np
.
polyfit
(
np
.
append
(
ET
[:
Corr_ind
],
ET
[
good_one
])
\
,
np
.
append
(
Doppler
[:
Corr_ind
],
Doppler
[
good_one
]),
2
)
# FIT
if
Type
==
'Fit'
:
p
=
np
.
polyfit
(
np
.
append
(
ET
[:
Corr_ind
],
ET
[
good_one
])
\
,
np
.
append
(
Doppler
[:
Corr_ind
],
Doppler
[
good_one
]),
2
)
for
i
in
range
(
i_integral
,
N_data
):
Doppler_biasfit
[
i
]
=
p
[
0
]
*
ET
[
i
]
**
2
+
p
[
1
]
*
ET
[
i
]
+
p
[
2
]
for
i
in
range
(
i_integral
,
N_data
):
Doppler_biasfit
[
i
]
=
p
[
0
]
*
ET
[
i
]
**
2
+
p
[
1
]
*
ET
[
i
]
+
p
[
2
]
###########################################################################################
###########################################################################################
for
i
in
range
(
N_data
):
delET
[
i
]
=
ET
[
i
]
-
ET
[
0
]
# bias fit
if
Type
==
'Linear'
:
p
=
np
.
polyfit
(
delET
[
i_integral
:
Corr_ind
],
Doppler
[
i_integral
:
Corr_ind
],
1
)
p0
=
p
[
0
]
p1
=
p
[
1
]
for
i
in
range
(
N_data
):
delET
[
i
]
=
ET
[
i
]
-
ET
[
0
]
# bias fit
if
Type
==
'Linear'
:
p
=
np
.
polyfit
(
delET
[
i_integral
:
Corr_ind
],
Doppler
[
i_integral
:
Corr_ind
],
1
)
p0
=
p
[
0
]
p1
=
p
[
1
]
for
i
in
range
(
N_data
):
Doppler_biasfit
[
i
]
=
p
[
0
]
*
(
delET
[
i
])
+
p
[
1
]
elif
Type
==
'Quadratic'
:
p
=
np
.
polyfit
(
delET
[
i_integral
:
Corr_ind
],
Doppler
[
i_integral
:
Corr_ind
],
2
)
p0
=
p
[
0
]
p1
=
p
[
1
]
p2
=
p
[
2
]
for
i
in
range
(
N_data
):
Doppler_biasfit
[
i
]
=
p
[
0
]
*
(
delET
[
i
])
**
2
+
p
[
1
]
*
(
delET
[
i
])
+
p
[
2
]
else
:
print
(
'Type is not recognized'
)
# subtract bias and scale residual
Doppler_biasfit
[
i
]
=
p
[
0
]
*
(
delET
[
i
])
+
p
[
1
]
elif
Type
==
'Quadratic'
:
p
=
np
.
polyfit
(
delET
[
i_integral
:
Corr_ind
],
Doppler
[
i_integral
:
Corr_ind
],
2
)
p0
=
p
[
0
]
p1
=
p
[
1
]
p2
=
p
[
2
]
for
i
in
range
(
N_data
):
Doppler_debias
[
i
]
=
(
Doppler
[
i
]
-
Doppler_biasfit
[
i
])
#print(ET[13542],Doppler[13542],Doppler_biasfit[13542], Doppler_debias[13542])
# back to code directory (why in this subroutine?)
# os.chdir(CODE_DIR)
if
Type
==
'Linear'
:
return
ET
,
delET
,
Doppler_debias
,
Doppler_biasfit
,
Corr_ind
,
p0
,
p1
if
Type
==
'Quadraticuadratic'
:
return
ET
,
delET
,
Doppler_debias
,
Doppler_biasfit
,
Corr_ind
,
p0
,
p1
,
p2
Doppler_biasfit
[
i
]
=
p
[
0
]
*
(
delET
[
i
])
**
2
+
p
[
1
]
*
(
delET
[
i
])
+
p
[
2
]
else
:
print
(
'Type is not recognized'
)
# subtract bias and scale residual
for
i
in
range
(
N_data
):
Doppler_debias
[
i
]
=
(
Doppler
[
i
]
-
Doppler_biasfit
[
i
])
#print(ET[13542],Doppler[13542],Doppler_biasfit[13542], Doppler_debias[13542])
# back to code directory (why in this subroutine?)
# os.chdir(CODE_DIR)
if
Type
==
'Linear'
:
return
ET
,
delET
,
Doppler_debias
,
Doppler_biasfit
,
Corr_ind
,
p0
,
p1
if
Type
==
'Quadratic'
:
return
ET
,
delET
,
Doppler_debias
,
Doppler_biasfit
,
Corr_ind
,
p0
,
p1
,
p2
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment