@@ -111,14 +111,14 @@ function plot_snap(max_depl=0,max_T=0,fullV=-1,part=0,reduc=0,fin=' ')
endif
endif
if(size(data.depl,1)>1),produce_plot('D2Dc_',sprintf(strcat("Depletion at t=",num2str(data.time/data.t_yr/1000000.0,"%04.0f"),"Myr")),-data.depl,input,data,res,ar,50,'jet',min_z=-max_depl,max_z=0,full=fullV),endif
if(size(data.depl,1)>1),produce_plot('D2D_',sprintf(strcat("Depletion at t=",num2str(data.time/data.t_yr/1000000.0,"%04.0f"),"Myr")),data.depl,input,data,res,ar,20,'bgry',min_z=0,max_z=max_depl,full=fullV),endif
if(size(data.depl,1)>1),produce_plot('D2Db_',sprintf(strcat("Depletion at t=",num2str(data.time/data.t_yr/1000000.0,"%04.0f"),"Myr")),data.depl,input,data,res,ar,20,'hot',min_z=0,max_z=max_depl,full=fullV),endif
% if(size(data.depl,1)>1), produce_plot('D2Dc_',sprintf(strcat("Depletion at t=",num2str(data.time/data.t_yr/1000000.0,"%04.0f"),"Myr")),-data.depl,input,data,res,ar,50,'jet',min_z=-max_depl,max_z=0,full=fullV), endif
% if(size(data.depl,1)>1), produce_plot('D2D_',sprintf(strcat("Depletion at t=",num2str(data.time/data.t_yr/1000000.0,"%04.0f"),"Myr")),data.depl,input,data,res,ar,20,'bgry',min_z=0,max_z=max_depl,full=fullV), endif
%
% if(size(data.depl,1)>1), produce_plot('D2Db_',sprintf(strcat("Depletion at t=",num2str(data.time/data.t_yr/1000000.0,"%04.0f"),"Myr")),data.depl,input,data,res,ar,20,'hot',min_z=0,max_z=max_depl,full=fullV), endif
if(size(data.w,1)>1),produce_plot('W2D_',"Water content in ppm",-data.w,input,data,res,ar,50,'jet',min_z=-100,max_z=0,full=fullV),endif%input.H2O), endif
% if(size(data.w,1)>1), produce_plot('W2D_',"Water content in ppm",-data.w,input,data,res,ar,50,'jet',min_z=-100,max_z=0,full=fullV), endif %input.H2O), endif
fO2=6.899_dp-(27714.0_dp/T_K)+0.05_dp*(P_bar-1.0_dp)/T_K+pX%fO2! instead fO2-field, where with change in O atoms we calculate with the same formula back how fO2 changes locally
part%X_CO2(m)=((44.01_dp/pX%fwm)*X_carbonate_melt)/(1.0_dp+(1.0_dp-(44.01_dp/pX%fwm))*X_carbonate_melt)! with 44.01 represent the MM of CO2 (12+2*16)
! part%X_CO2(m)=((44.01_dp/pX%fwm)*X_carbonate_melt)/(1.0_dp+(1.0_dp-(44.01_dp/pX%fwm))* X_carbonate_melt) ! with 44.01 represent the MM of CO2 (12+2*16)
part%X_CO2(m)=((44.01_dp/pX%fwm)*X_carbonate_melt)/(1.0_dp-(1.0_dp-(44.01_dp/pX%fwm))*X_carbonate_melt)! with 44.01 represent the MM of CO2 (12+2*16)
part%X_CO2(m)=(part%X_CO2(m))*(1.0_dp-(1.0_dp-part%df(m))**(1.0_dp/pX%dCO2))!/part%df(m) (df already in X_CO2 now) ! fractional melting
part%X_CO2(m)=part%X_CO2(m)*10.0_dp**6
! if (part%X_CO2(m)*part%df(m).gt.part%CO2(m)) then