input_PTBench.txt 10.8 KB
Newer Older
Lena Noack's avatar
Lena Noack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
! Geometry	0
geometry	=	0		! 0-box, 1-sph. annulus, 2-cylinder
dim		=	2
nl		=	375 !3000		! number of grid points in lateral direction (2 ghost points are added when reflective boundary is used)
nr		=	84 !670 		! number of grid points in radial direction (+2 ghost points)
lmin		=	0.0		! only used when geometry=0
lmax		=	3000000		! only used when geometry=0
rmin		=	670000		! 
rmax		=	1340000		! rmax=rmin+1.0
phi_factor	=	0		! only used when geometry>0, 1.0: full annulus, 0.5: halph annulus, ... 


! Adaptivity    0
ad_factor       =       0 !2		! 0-uniform box grid, 1-refine area (ad_min/ad_max values needed), 2-smallest/largest resolution (res_min/res_max) is set at (ad_l=0.5*lmax, ad_r=rmax)
res_ratio_l     =       0.2 
res_ratio_r     =       0.2 


! Bnd_cond	0
Ttop		=	0		! temperature at surface, until now: has to be 0 or dimensional value (e.g. 288 for Earth)
Tbottom		=	1440		! temperature at CMB, until now: has to be 1 or dimensional value (e.g. 3900 for Earth)
noslip_t	=	0		! 0: free-slip, 1: no-slip at surface boundary
noslip_b	=	0		! 0: free-slip, 1: no-slip at CMB boundary
inner_bound	=	0		! 1: isolated
outer_bound	=	0		! 1: isolated
open_b_bound	=	0		! 1: open boundary at bottom
periodic	=	0		! 0: reflective boundary, 1: periodic boundary, is currently tested, normally: 0 for box and 1 for sphere
bnd_l		=	2
bnd_r		=	1


! Restart_TS 	0
use_snap	=	0		! insert number of TS from the snapshot, from which the simulation shall re-start
last_snap	=	0		! set to 1, then the last snapshot is automatically used (use_snap is ignored)
Cdt		=	1 		! Courant factor when positive value (e.g. 0.1), Delta criterium factor when negative (e.g. -10.0)
nbiter		=	0		! max number of time steps, not used if tmax>0
iter_out	=	0 		! output every ... time steps
tmax		=	1.5e+7	! 15Myr	! maximal time, stop the simulation when reached; if tmax=0 then either nbiter or conv is used to stop the simulation
t_output	=	5.0e+5 ! 0.5Myr	! output time


! Initial 	0
ampl		=	0.0 !0.1 		! amplitude of initially applied sphercial harmonics
sph_l		=	-1 		! mode of spherical harmonics, chose +/-1.0 times the aspect ratio for box geometry and number of preferred plumes for polar geometry
linear		=	0 		! initial temperature profile: 0: T=Tini everywhere; 1: linear, 2: conductive profile, 3: convective profile with TBLs
Tini		=	1300		! initial mantle temperature for profile 3
s_bot		=	67000		! lower thermal boundary layer (TBL) for profile 3
s_top		=	67000		! upper thermal boundary layer (TBL) for profile 3
TinclTref	=	1


! Viscosity     0
n_fac           =       0 		! Arrhenius AND FK: non-Newtonian factor (1.0 - Newtonian, >1.0 non-Newtonian)
p_fac		=	0 		! Newtonian: grain-size factor
iniStrRate      =       1.0e-15 	! 10^-15 1/s ! Initial Strain rate
StartNN         =       0 		! Number of timesteps after which non-Newtonian law is applied
Tref            =       0.0             ! reference temperature for Rayleigh number
zref            =       0.0             ! reference depth for Rayleigh number
gam             =       0.0             ! FK Viscosity: gamma_T
gamP            =       0.0             ! FK Viscosity: gamma_p
E               =       0 		! Arrhenius: actvation energy
E_wet		=	0 
V               =       0 		! Arrhenius: activation volume
V_wet		=	0 
E_dis           =       0 		! Arrhenius, non-Newtonian: activation energy
E_dis_wet	=	0
V_dis           =       0 		! Arrhenius, non-Newtonian: activation volume
V_dis_wet	=	0 
A_dif           =       0 		! Arrhenius, mixed Newtonian: prefactor Newtonian: A' = A * eta_ref / d_ref^p
A_dif_wet	=	0 
A_dis           =       0	 	! Arrhenius, mixed Newtonian: prefactor non-Newtonian: A' = A * eta_ref^n * (kappa/D^2)^(n-1)
A_dis_wet	=	0 
water_r_dif	=	0 		! is used in Arrhenius when wet formulation used
water_r_dis	=	0 	
T0              =       273.15		! Arrhenius: surface temperature (Tsurf/DeltaT)
AdVisc          =       0               ! adapt viscosity at boundaries, such that viscosity at ri/ro is correct
ViscMin		=	1.0e+20
ViscMax		=	1.0e+25

! Plasticity    0
plasticity      =       0		! 0-Bingham, 1-nonsmooth, 2-angle-dependent
friction        =       0 !1.0 		! non-dim factor: rho*g*D^3 / kappa / eta
mantle_fr_angl	=	0 		! plasticity = 2: friction angle in degrees
mantle_fr_angl_m =	0 		! plasticity = 2: minimal friction angle for strain weakening
mantle_fr_coh	=	0 		! plasticity = 2: surface cohesion, 20 MPa
YieldStr0       =       0 		! plasticity = 0/1: surface yield stress (YS_0); plasticity = 2: surface cohesion
YieldStrZ       =       0               ! plasticity = 0/1: increase of yield stress with depth (YS_z*z); plasticity = 2: non-dim. factor for pressure-dependent part
strain_min	=	0 		! plasticity = 2: for linear strain-weakening of friction angle
strain_max	=	0 		! plasticity = 2: for linear strain-weakening of friction angle
UseRefDensity	=	2
moveRef		=	1
weak_x0         =       1487796		! = 1500km - 0.5*weak_w/sin(weak_angle)
weak_x1         =       1530000		! = 1530km
weak_angle      =       -35		! angle of weak zone in degrees
weak_d          =       82000
weak_w          =       14000
weak_visc       =       1.0e+20		! ref visc = 1e20
weak_fr_angl	=	0 
weak_fr_angl_m	=	0 	
weak_fr_coh	=	0 
weak_rho        =       3250 		! ref density = 3200
weak_T          =       0
weak_cp         =       1250		! ref heat capacity = 1250
weak_k          =       2.5		! ref conductivity (mantle) = 4
weak_alpha	=	2.5e-5
weak_h		=	0
weak_w_H2O	=	0
weak_w_r	=	0		! set either 0 or 1 for dry or wet...
vel_r           =       5		! 5cm/yr vel imposed on right side
vel_z_in        =       110000		! 110km, depth until which inflow occurs
vel_z_out       =       130000		! 130km, depth from which on outflow occurs, linear velocity inbetween
OP_BOC          =       7000		! 7km
OP_BOC_rho      =       3250
OP_BOC_T        =       0
OP_BOC_eta      =       1.0e+23
OP_BOC_fr_angl	=	0 
OP_BOC_fr_angl_m =	0 
OP_BOC_fr_coh	=	0 
OP_BOC_cp       =       1250
OP_BOC_k        =       2.5
OP_BOC_alpha	=	2.5e-5
OP_BOC_h	=	0
OP_BOC_w_H2O	=	0
OP_BOC_w_r	=	0		! set either 0 or 1 for dry or wet...
OP_SHB          =       32000		! 32km
OP_SHB_rho      =       3250
OP_SHB_T        =       0
OP_SHB_eta      =       1.0e+23
OP_SHB_fr_angl	=	0 
OP_SHB_fr_angl_m =	0 
OP_SHB_fr_coh	=	0 
OP_SHB_cp       =       1250
OP_SHB_k        =       2.5
OP_SHB_alpha	=	2.5e-5
OP_SHB_h	=	0
OP_SHB_w_H2O    =	0 
OP_SHB_w_r      =	0 		! set either 0 or 1 for dry or wet...
OP_ThL          =       43000		! 43km
OP_ThL_rho      =       3250
OP_ThL_T        =       0
OP_ThL_eta      =       1.0e+23
OP_ThL_fr_angl	=	0 
OP_ThL_fr_angl_m =	0 
OP_ThL_fr_coh	=	0 
OP_ThL_age      =       4.0e+7		! 40 Myr[s]*kappa/D^2
OP_ThL_cp       =       1250
OP_ThL_k        =       2.5
OP_ThL_alpha	=	2.5e-5
OP_ThL_h	=	0
OP_ThL_w_H2O    =	0
OP_ThL_w_r      =	0		! set either 0 or 1 for dry or wet...
SP_BOC          =       8000		! 8km
SP_BOC_rho      =       3250
SP_BOC_T        =       0
SP_BOC_eta      =       1.0e+20
SP_BOC_fr_angl	=	0 
SP_BOC_fr_angl_m =	0 
SP_BOC_fr_coh	=	0 
SP_BOC_cp       =       1250
SP_BOC_k        =       2.5
SP_BOC_alpha	=	2.5e-5
SP_BOC_h	=	0
SP_BOC_w_H2O    =	0 
SP_BOC_w_r      =	0 		! set either 0 or 1 for dry or wet...
SP_SHB          =       32000		! 32km
SP_SHB_rho      =       3250
SP_SHB_T        =       0
SP_SHB_eta      =       1.0e+23
SP_SHB_fr_angl	=	0 
SP_SHB_fr_angl_m =	0 
SP_SHB_fr_coh	=	0 
SP_SHB_cp       =       1250
SP_SHB_k        =       2.5
SP_SHB_alpha	=	2.5e-5
SP_SHB_h	=	0
SP_SHB_w_H2O    =	0 
SP_SHB_w_r      =	0 		! set either 0 or 1 for dry or wet...
SP_ThL          =       70000		! 70km
SP_ThL_rho      =       3250
SP_ThL_T        =       0
SP_ThL_eta      =       1.0e+23
SP_ThL_fr_angl	=	0 
SP_ThL_fr_angl_m =	0 
SP_ThL_fr_coh	=	0
SP_ThL_age      =       7.0e+7		! 70 Myr[s]*kappa/D^2
SP_ThL_cp       =       1250
SP_ThL_k        =       2.5
SP_ThL_alpha	=	2.5e-5
SP_ThL_h	=	0
SP_ThL_w_H2O    =	0
SP_ThL_w_r      =	0		! set either 0 or 1 for dry or wet...
T_init_plate    =	7		! set an initial temperature field
adiabat		=	0.25		! in Degree/km
isotherm        =       800
DiT		=	0 !1


fieldsAll	=	1 !0
fieldP		=	1


! Ra_H0		0
Ra		=	0.0 		! Rayleigh number at Tref/zref
eta_ref		=	1.0e+20		! set Ra automatically
H0		=	0.0		! initial heat source density, set to H0>1 for internal heating!
lambda		=	0.0		! decay of internal heat sources with time: H=H0*exp(-t*lambda)
B		=	1 		! Buoyancy ratio for chemical diffusion, needed in momentum equation
Le		=	0 		! Lewis number for chemical diffusion, if 0, then no double-diffusive solver is used
LeV		=	0 
comp_init	=	0 !-2		! +-1 = linear, +-2 = rho value; negative: add cylinder, positive: add random perturbation
comp_ampl	=	0		! Amplitude of composition perturbation
C_ref		=	0 !1		! reference composition (should correspond to reference density)


! Particles 	0
use_part	=	1		! use particles instead of compositional field approach
part_n		=	0 		! total number of particles, ignored if part_n_cell>0
part_n_cell	=	10		! number of particles per cell
part_depth	=	1.0
restart_p	=	1
part_rk		=	4


! Numerics 	0
debug		=	0		! set between 1 and 5 to obtain detailed information
max_outer       =       50		! number of max outer iterations (coupled energy-momentum solver), used if e_solver>0
max_inner       =       3               ! number of max inner iterations (coupled pressure-velocity solver), used if m_solver>0
noBouss		=	1 !0		! if set to one then no Boussinesq is used in momentum solver
e_solver	=	-1 !3		! -1: no e-solver, 0: direct first-order explicit, 1: second-order iterative explicit, 2: first-oder iterative implicit, 3: second-order iterative implicit
m_solver	=	1		! 
c_solver	=	0
convT		=	1e-8		! criterion for convergence of outer iteration, used if e_solver>0 and number of outer iterations < max_outer
convV		=	1e-4 		! criterion for convergence of inner iteration, used if m_solver>0 and number of inner iterations < max_inner
conv		=	0		! stops the simulation if convergence of time steps is reached, not used if tmax>0 or nbiter is reached
test		=	0		! output of pressure, when used IDL keyword /test has to be used, as well
beta		=	1.0		! for flux limiter; 1: minmod, 2: superbee
average		=	1		! averaging scheme to be used for viscosity: 0=old, 1=harmonic, 2=arithmetic, 3=geometric
p_average	=	2		! averaging scheme to be used for particles: 1=harmonic, 2=arithmetic, 3=geometric
p_average2	=	2		! for density averaging; if 0 then set to p_average
p_penalty	=	1.0e-7		! this value shoud be 1.0e-7 and is divided by the maximal viscosity in the stokes equation
nmesures	=	0		! currently not used... should be included again for the cases when quasi-steady-state is reached to gain average values for the last X timesteps


! Physics 	0
g		=	9.81		! still has to be tested with new version if dimensional quantities really can be used...
alpha		=	2.5e-5
rho		=	3200
kappa		=	1.0e-6
grain_size	=	1
mantle_w_H2O	=	0		! reference water value
mantle_w_r	=	0		! set either 0 or 1 for dry or wet...
k		=	183.33 		! 183.33, ref value = 4
Tm_ref          =       0
Cp		=	1250

EOF		=	1